
December 2004 www.stsc.hill.af.mil 19

In the November/December 1995 issue
of the Journal of Systems Management,

Paul Newcum [1] listed 13 problems that
pervade the software industry:
1. Complexity.
2. Jargon.
3. Imprecise and inconsistent specifica-

tions.
4. Lack of up-front prototypes.
5. Lack of reusable software compo-

nents.
6. Lack of realistic costs and schedules.
7. Difficulties using new paradigms.
8. Unrealistic deadlines.
9. Not removing defects and errors.
10. Quality not pursued.
11. Defects and errors regularly placed in

software.
12. Poor business functions delivered ini-

tially.
13. Poor measurements of design and

programming.
Any practicing software engineer,

software project manager, or chief infor-
mation officer can attest to the accuracy
of Newcum’s assessment. Unfortunately,
the interaction between several of these
problems is not as well understood as it
should be. This article considers two of
these – reuse and quality – and illustrates
how some current management practices
discourage possible quality improvement
and cost savings. It then suggests simple
changes that can help achieve software
that meets all four objectives most orga-
nizations operate under: developing more
software better, cheaper, and faster.

An Extremely Rosy Scenario
Suppose that an organization has two
software projects, A and B. Suppose that
half of the source code that is developed
in project A also can be reused in project
B. Suppose also, for the sake of simplic-
ity, that the two projects are the same size
and that the two projects interface
smoothly, with no additional costs due to
lack of imprecise or inconsistent specifi-

cation standards (another on Newcum’s
list of pervasive software problems).
Finally, assume that the portion of pro-
ject A that is reused in project B does not
require any changes.

If the manager of project A pro-
duces the software on time and within
budget, and the software meets the pre-
determined quality standards (usually

measured in the number of software
defects per thousand lines of source
code, or number of failures per thousand
hours of operation of the software),
then everyone is happy and he or she is
likely to be rewarded.

What does this mean for the manag-
er of project B? Suppose that he or she
needs to reuse half of the source code
from project A. Since only half of pro-
ject B consists of new code, it is logical
to assume that this project should have a
smaller budget than project A. In most
organizations, the determination of just
how much smaller the budget should be
depends upon the organization’s experi-

ence with proper cost estimation for
software projects with some amount of
software reuse.

In this best of all possible worlds, the
organization’s cost estimation takes into
account the amount of reuse and
whether the requirements, design, or
source code from project A are being
reused in project B. (Earlier reuse is bet-
ter than later, since the costs of all the
remaining activities in the software life
cycle of project B can be avoided from
the point that the software is reused.
There is no need to budget for require-
ments engineering, software design, cod-
ing, testing, or integration for any soft-
ware that already exists.)

In this extremely rosy scenario, pro-
ject A is produced on time, within bud-
get, and with the expected level of qual-
ity; project B will also be produced on
time, within budget, and with the level of
quality expected by the organization.
With perfect software reuse and
extremely accurate cost estimation, pro-
ject B has been created by a software
development process that is both cheaper
and faster. The high level of reuse has
made the organization more efficient,
giving us more software per month. It
may even give us a better quality product
for project B, because most of the soft-
ware errors that normally occur during
normal software development have
already been removed (we hope) in pro-
ject A.

Everything is wonderful. Or is it?

A Slightly Less Rosy Scenario
One problem that can occur even in this
extremely rosy scenario is that project B
may have a more stringent requirement
for quality than did project A. For exam-
ple, small errors that occur with improp-
er capitalization of messages in a help
system may not be worth fixing in a text
editor. The quality of this system is
probably sufficient, even with the error.

Separate Money Tubs
Hurt Software Productivity

Most software development organizations operate under four goals: more, better, cheaper, and faster. Reuse of existing soft-
ware is often considered as a way to achieve these goals. Unfortunately, the project accounting practices of many organizations
unwittingly discourage software project managers from improving costs and quality simultaneously. Here we show how a sim-
ple change in management practice and project accounting can encourage software development that meets these four goals. The
simple change is consistent with the work of industry leaders such as Barry W. Boehm, David Weiss, James Coplien, Chi
Tau Lai, and others on product line architectures.

Dr. Ronald J. Leach
Howard University

“Most development
organizations that have

successful reuse
programs recognize

that there is
overhead associated

with reuse; this
overhead is simply part

of the developing
organization’s cost.”



20 CROSSTALK The Journal of Defense Software Engineering December 2004

However, in a safety-critical applica-
tion such as a user interface for a heart
monitor, a confusing message can be the
difference between life and death. An
error in a seldom-used statistical routine
can be ignored if it occurs in an inex-
pensive spreadsheet. The same error in
software that controls the placement of
coolant in a nuclear power plant can be
disastrous. The problem in both cases is
that software that is perfectly adequate
for one application becomes dangerous
when used in another. You can hear the
legal team shuddering.

It appears that software reuse cannot
always provide improvements in soft-
ware quality, and in fact may degrade per-
formance if integrated with higher qual-
ity components.

Clearly software reuse is dangerous,
and can be expensive. Or is it?

A Solution
The difficulty here is that there is no
incentive for project A to produce any
higher quality of software than is needed
for its requirements. The manager of
project A views the budget as a tub of
money, which can be dipped into to get
project resources. The manager of pro-
ject B has a similar view, with perhaps a
different sized tub.

Many organizations use what some
have called the every-tub-on-its-bottom
approach to funding software projects.
In this funding approach, the manager of
a project is given a budget for comple-
tion of his or her project. The manager
is rewarded for completion of the pro-
ject under budget and within schedule,
and held responsible to some extent if
the project is either over budget or late
(or both). The tubs of money are consid-
ered by project managers as resources to
be used solely for their own projects.

If upper-level management follows
the every-tub-on-its-bottom approach,
then there is no incentive for the manag-
er of project A to improve project quali-
ty to improve costs for another project.
Even if the manager of project A decid-
ed to do so, there are no additional
resources available to increase the quality
of the product. In this case, the goals of
more and better are directly in opposi-
tion to the goals of cheaper and faster.

The solution is for the developing
organization to apply a small reverse tax to
every software project that is likely to
produce software that will be reused in
another project. It is called a reverse tax

because it is added to the budget of the
project teams to allow them to provide
the extra quality for contribution to a
pool of reusable code. The increased
funds provided in this reverse tax allow
potentially reusable software to be given
a quality check for its number of known
errors, adherence to standards, docu-
mentation, and so on. The activities in
this quality check are often referred to as
certification in the software reuse litera-
ture. Certification of potentially reusable
software can be paid by the reverse tax.

There are several questions that arise
when considering the application of this
reverse tax:
• Who pays for this tax – the cus-

tomer or the developer? The devel-
opment organization is responsible.
Most development organizations that
have successful reuse programs rec-
ognize that there is overhead associ-

ated with reuse; this overhead is sim-
ply part of the developing organiza-
tion’s cost. (Of course, to some
degree, the customer always pays for
the cost of development as part of
the total software life-cycle cost,
operational cost, and the true cost of
having the software that is really
needed by the customer’s organiza-
tion.)

• How is it arranged? Generally
speaking, the development organiza-
tion is responsible, although the cus-
tomer may participate actively. Any
organization considering a systematic
approach to software reuse must do
some domain analysis – the term used
to describe, for example, determining
how many additional projects are
likely to need some portion of the

current software [2, 3, 4]. Domain
analysis is a generalization of systems
analysis, in which the primary objec-
tive is to identify the operations and
objects needed to specify informa-
tion processing in a particular appli-
cation domain. Domain analysis will
precisely identify domains and soft-
ware artifacts within these domains
that are good candidates for reuse,
and will estimate the economic bene-
fits of reusing these software arti-
facts.

• Who is doing this domain analy-
sis? The domain analysis is done by
the development organization, in
consultation with domain experts
that may be outside consultants,
members of the developer’s internal
staff, or even customer representa-
tives.

• Is there an overhead for systemat-
ic software reuse? Of course there
is overhead. Nothing is really free in
the software industry. The overhead
of systematic software reuse has been
estimated at about 5 percent of over-
all cost, assuming that there is a met-
rics program, such as Capability
Maturity Model® Level 2 or higher, in
place [2].

• Within the development organiza-
tion, who pays for this overhead?
Other projects that are either concur-
rent with the selected projects, as well
as future projects that will use the
code pay for this tax. Particular pro-
jects that will create reusable compo-
nents have some form of reverse tax
added to their budgets for incorpo-
rating additional quality into these
reusable components. The increased
budget is intended to improve quality,
not develop software from scratch.

• Is there a net cost to the develop-
ment organization? There should
be no net cost, provided that a
reusable component that benefits
from the reverse tax is actually reused.

• Is there a net benefit to the devel-
opment organization? Yes, the net
benefit is the difference between the
cost of new development with a
reused component versus the cost of
new development. The cost savings
increases greatly if the component is
reused more than once.

• How does the organization deter-
mine the appropriate amount of
the reverse tax? Additional testing
and quality control measures (called
certification) must be employed for
each software artifact to be reused.
The cost for this certification is gen-

® The Capability Maturity Model is registered in the U.S.
Patent and Trademark Office by Carnegie Mellon
University.

Reuse

“Particular projects
that will create

reusable components
have some form
of reverse tax
added to their

budgets for
incorporating additional

quality into these
reusable components.”



Separate Money Tubs Hurt Software Productivity

December 2004 www.stsc.hill.af.mil 21

erally under 5 percent per reused arti-
fact.

• What is the potential effect on
future projects? They may be cheap-
er to develop, since not all code needs
to be developed from scratch, and
any reused code is certified as being
of very high quality.

• Are there any other potential prob-
lems with this accounting
approach? In some cases, there
might be legal roadblocks. These
roadblocks are unlikely, however,
since many projects reusing software
artifacts are written for the same cus-
tomer.
Using the resources provided by this

reverse tax allows a project to produce a
higher quality system than it might do
otherwise. If another project can reuse
the higher quality source code that was
produced by project A, then the initial
extra cost due to the higher quality is
recovered for the organization.
Therefore, there is no additional cost
from an organizational view.

As stated before, the situation
changes for the better if there are sever-
al software development projects that
can use the reusable code produced by
project A. Improving project A’s quality
by reducing errors, improving documen-
tation, and standardizing all software
interfaces can simultaneously improve
the quality and reduce the cost of all sys-
tems that reuse the source code from
project A. This is clearly the way to get
software projects that simultaneously
achieve all four goals. Software develop-
ment can be more, better, cheaper, and
faster.

It is clear that the relatively simple
institutional changes in accounting prac-
tice described in this article can make it
possible for projects to improve both
productivity and quality with a decrease
in overall cost. The approach is essential-
ly risk-free, because the reverse tax on
any project is small, reducing any need
for a major change in institutional prac-
tice and the inherent cultural risks associ-
ated with major institutional change. At
the same time, this approach can help
create a culture in which software reuse
is enthusiastically adapted by all level of
software engineers.

More Extensive Approaches
These ideas are, by no means, new. Barry
Boehm [5] introduced the Win-Win
approach, also known as Theory W, to
software cost modeling and commercial
off-the-shelf integration. His work sub-
sumes the points made in this article. A

more detailed discussion of incentives
and disincentives to reuse can be found
in [2].

David Weiss and C. Lai [6] have writ-
ten an important book on software prod-
uct-line architectures. Much of their
work is based on their experiences at
Lucent Technologies and the resulting
cost savings and quality improvement.
An important follow-up paper [7]
appeared in 1999. Note that the
approach suggested here is much less
formal than the complexity needed for
the product-line architecture approach
suggested by Weiss, Lai, and others.

Their work has been followed up by a
series of publications on product-line
architectures, including ones readily
available from the Software Engineering
Institute. Withey’s report [8] is typical.

However, note that the ideas pre-
sented in this article have been used sev-
eral places without the institutional reor-
ganization needed to support a complete
transition to a product-line architecture
approach. For example, the author
worked extensively on software for
ground control of spacecraft at NASA
Goddard Space Flight Center in
Greenbelt, M.D., during a time of transi-
tion to a more reuse-based software
development. The software team in what
was then called the Control Center
Systems Branch won a center-wide award
for cost savings.

That branch was responsible for the
ground systems that control the initial
interface between a spacecraft and
ground-based computer control centers.
The control system software consists of
large amounts of code organized into
several subsystems to perform the fol-
lowing operations, among others:

• Determine the current position of
the spacecraft.

• Control the operation of the space-
craft.

• Receive and relay telemetry informa-
tion from the spacecraft.

• Detect significant events in space-
craft operation.

• Display the status of the system.
Space system software is extremely

complex because it has severe require-
ments for fault tolerance, must interface
with many other systems, and has some
real-time requirements as well. An addi-
tional complexity is that the software
must begin development far in advance
of a projected launch of a spacecraft and
therefore the level of technology of
both hardware and support software
(operating system, compilers, tools, com-
mercial software, etc.) is not easy to
determine during the beginning of devel-
opment.

Reuse has been a concern for many
years. However, the changing demands
of spacecraft, the fluidity of graphics
standards, the need for isolation from
networks such as the Internet for securi-
ty purposes, the long lead time for pro-
jects, and the need for severe restrictions
on the weight of onboard computers all
have made the development of a reuse
program more difficult.

The initial step in any program of soft-
ware reuse – domain analysis – was facili-
tated by a core group of talented domain
experts, including both NASA employees
and contractor personnel. The domain
experts were already motivated by finan-
cial pressures and their desire to produce
software in an efficient manner. They
identified a reusable core of spacecraft
control software (TPOCC in Figure 1)

1

Figure 1: Example of a Reusable Core of Spacecraft Control Software



Reuse

22 CROSSTALK The Journal of Defense Software Engineering December 2004

and mission-specific software.
Accounting practices were modified

on individual projects to incorporate the
reverse tax to ensure that the TPOCC
reusable core was of exceptionally high
quality. There was little resistance,
because the amount of work was over-
whelming and any method to improve
product quality and efficiency was
accepted readily.

Examination of internal software
discrepancy reports (bug reports) showed
that the TPOCC reusable software core
had several orders of magnitude errors
fewer than other systems and subsys-
tems, suggesting that the reverse tax
funds saved by not duplicating software
development had been properly allocat-
ed to improve quality of the most heav-
ily reused components.

Other Benefits
Most of the problems that Newcum list-
ed can be addressed by the simple
change in project accounting proposed
here. The apparent complexity of soft-
ware projects is reduced by standard
interfaces between component software
parts. Client/server designs are consis-
tent with high quality software with well-
defined interfaces. Schedules can be
made more realistic for projects that
reuse high quality code, since there will
be fewer problems integrating error-
prone software with poorly specified
interfaces. It is easier to support good
business functions by reusing software
components that are known to work.

It is less obvious, but equally true,
that encouraging reuse by providing
incentives to improve quality can
improve design and encourage the use
of up-front prototypes. Having a list of
proven software components with stan-
dard interfaces can make the develop-
ment of prototypes much faster.u

Acknowledgement
This research was partially supported by
the National Science Foundation under
grant number 0324818.

References
1. Newcum, Paul. “13 Pains in My

Software! With Healthy Medications
for Each.” Journal of Systems
Management Nov./Dec. 1995: 28-31.

2. Leach, R.J. Software Reuse: Methods,
Models, Costs. New York: McGraw-
Hill, 1997.

3. Cohen, Sholom G., Jay L. Stanley Jr.,
A. Spencer Peterson, and Robert W.
Krut Jr. “Application of Feature-
Oriented Domain Analysis to the

Army Movement Control Domain.”
Pittsburgh, PA: Software Engineer-
ing Institute, June 1992.

4. Prieto-Diaz, R. “Domain Analysis:
An Introduction.” Software Engi-
neering Notes 15.2 (Apr. 1990): 47-
54.

5. Boehm, B., P. Bose, E. Horowitz, and
M.J. Lee. “Software Requirements
Negotiation and Renegotiation Aids:
A Theory-W Based Spiral
Approach.” International Confer-
ence on Software Engineering,
Seattle, WA, Apr. 23-30, 1995.

6. Weiss, D.M., and C. Lai. Software
Product Line Engineering. Addison
Wesley Longman, New York, 1998.

7. Coplien, J., D. Hoffman, and D.
Weiss. “Commonality and Variability
in Software Engineering.” IEEE
Software Nov./Dec. 1999: 37-45.

8. Withey, J. “Investment Analysis of
Software Assets for Product Lines.”
Pittsburgh, PA: Software Engineer-
ing Institute, Nov. 1996.

About the Author

Ronald J. Leach, Ph.D.,
is professor and chair
of the Department of
Systems and Computer
Science at Howard Uni-
versity. Leach has had

grants and contracts from many gov-
ernment agencies and companies and
has given lectures on three continents.
He does research in software engi-
neering, with special interest in reuse,
metrics, fault tolerance, performance
modeling, process improvement, and
the efficient development of complex
software systems. He is the author of
five books and more than 65 pub-
lished technical articles. Leach has a
Bachelor of Science, Master of
Science, and doctorate degree in
mathematics from Maryland
University, and a Master of Science in
computer science from Johns
Hopkins University.

Department of Systems and 
Computer Science
School of Engineering
Howard University
Washington, D.C. 20059
Phone: (202) 806-6650
Fax: (202) 806-4531
E-mail: rjl@scs.howard.edu

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE 

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:________________________________________________________________________

RANK/GRADE:_____________________________________________________

POSITION/TITLE:__________________________________________________

ORGANIZATION:_____________________________________________________

ADDRESS:________________________________________________________________

________________________________________________________________

BASE/CITY:____________________________________________________________

STATE:___________________________ZIP:___________________________________

PHONE:(_____)_______________________________________________________

FAX:(_____)_____________________________________________________________

E-MAIL:__________________________________________________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

AUG2003 c NETWORK-CENTRIC ARCHT.

SEPT2003 c DEFECT MANAGEMENT

OCT2003 c INFORMATION SHARING

NOV2003 c DEV. OF REAL-TIME SW

DEC2003 c MANAGEMENTBASICS

MAR2004 c SWPROCESS IMPROVEMENT

APR2004 c ACQUISITION

MAY2004 c TECH.: PROTECTING AMER.

JUN2004 c ASSESSMENT AND CERT.

JULY2004 c TOP 5 PROJECTS

AUG2004 c SYSTEMS APPROACH

SEPT2004 c SOFTWARE EDGE

OCT2004 c PROJECT MANAGEMENT

NOV2004 c SW TOOLBOX

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <stsc.customerservice@
hill.af.mil>.


